Showing posts sorted by date for query c14. Sort by relevance Show all posts
Showing posts sorted by date for query c14. Sort by relevance Show all posts

Tuesday, 1 April 2025

Kawasaki Concours C14 1400GTR Valve Check Part 3.1 - References for putting the plugs back together again on top of the valve cover

Tools for finding what goes where (it's spaghetti in there!).

The comprehensive disassembly video shared previously: https://youtu.be/5JP0_Kv7x5w?si=Ictk8g8qK3e_hB3m 

Pipe in the foreground right is the routing for the coolant line to the overflow tank.

White plug in black reed valve centre plug.

https://youtu.be/RvQjEvCSGvI?si=CCvs4HMMJBEHfooM

Big grey plug under the throttle cables

Wobbly and somewhat non-linear, but another disassembly video:: https://youtu.be/b-HDezrXSc0?si=hlvAZWdhF7Qg7hoC


Black wire from throttle bodies to cam sensor on valve cover.



Definitely white plug in black reed cover.

Saturday, 29 March 2025

Kawasaki Concours C14 1400GTR Valve Check Part 3 - Putting it back together again

It's a slow process putting all this back together again. Even with a prolific number of photos and copious notes here on the blog I'm finding this a fiddly and frustrating process. My current plan is to get everything plugged in, top up the radiator and run it to make sure it's back together right before buttoning it up (there are a f(@# ton of  buttons).

The latest fun has been plugging the plethora of plugs over the valve cover back in.

I've got a couple of plugs (21) left after connecting everything else. The question now becomes: are oxygen sensor plugs not used on a 2010 Canadian market bike? 

Got the plugs in, except for those two top left of the rat's nest.

Here's a close-up. That white one has me baffled but perhaps it's the front cam sensor.

Tomorrow (assuming the late March ice storm we have in store doesn't throw us back to the stone age), I'll check for oxygen sensors on the exhaust, and if not there I'll know that one of those plugs is probably unused.

The ice storm was persistent but mainly pretty - no hydro lines down around here.

Other things to check are the front cam sensor (7-R on the diagram) which was very difficult to reinstall with a new o-ring. That plug is probably dangling down the front and needs to find a mate on top of the motor (looks like it's plumbed in under the front plastic guard). If that's my missing plug and the other one is an unused oxygen sensor then I'm about there.

After that gets settled I'll do one last look around for anything I might have missed before topping up the radiator and seeing if this thing'll run. If does I'll reroute the wires properly and should have it back to a point where I can start reinstalling all the fairings - which is a whole separate pain in the @$$, but at least one I've done before.

Then things get philosophical. Work has picked up and I don't have the patience or headspace to spend hours each weekend keeping these old bikes in motion. The temptation is to get $10k (CAD) between them and then buy something that can go when I need it to without so much TLC. 

I can save the wrench turning for when I retire. I enjoy working on them but trying to do a job this complex when I'm having to leave it for weeks on end while travelling makes a difficult job more so. Had I the time and space to do this daily when I wasn't juggling a demanding job, it'd have been an entirely different experience.

I'm loving the travel opportunities and my work is something I enjoy, but the deep bike maintenance doesn't fit with it at this point.

Haliburton was magical...



Flying out to the maritimes is never a bad thing...



...but those weeks away mean I'm coming back to an incredibly complicated job sometimes 20 days after I last touched it.

I've never made enough to be sentimental about vehicles and keep everything (I'd rather put those resources toward travel anyway). Time to simplify the bike stable to let me focus on riding when I can squeeze it in. I'll save the time suck that is older bike ownership for when I have more time to suck.

Saturday, 22 March 2025

Tiger Success (!) and first ride of 2025

 Last fall I took the fuel injection apart on the 2003 Triumph Tiger 955i. It wasn't fueling properly and was unrideable. I barely got any mileage on it last season, so I replaced every o-ring in the system and got a new fuel pump for it. It also got new throttle and clutch cables last year. If this last hail Mary attempt to resolve the atrocious fuel injection on this old bike didn't work, it was out the door.

The good news is it fuels nicely again for the first time in a year! I've still got to tune it and get the idle right, but it feels fantastic. Look back over the posts in December and earlier to see the details and where to get parts. If you're trying to keep an old Triumph 955i on the road (Triumph doesn't support them with parts any more), try this, it seems to work!

Battery needed a kick, but once charged up it ran like a top.

The clawed hands of winter still twist into the sky.


First chance to try out a new Shark helmet. My first and I'm not disappointed.

Still got snow on the borders.



The Grand River is swollen by the spring runoff - that's the camp ground underwater on the other side.


That grin is involuntary. The first time you lean into a corner after a long winter on four wheels is magical.

Amy knows how it feels...



Nice to have one road worthy. The C14 valve job continues when I have time, but work has picked up and I'm travelling again, so my weekends are seldom my own.

Here is the radiator loosened so I could get to the front cam sensor to change the o-ring. The Murph's Kit came with an oversized one. That was 40 minutes of sweat and swearing before I gave up and stepped away (again). This was a giant time suck at a time when I don't have a lot of... time.

Tuesday, 4 February 2025

Kawasaki Concours C14 1400GTR Valve Check Part 2.4 - Cams out, shims measured!

 After what seems like weeks of disassembly (because it has been), the C14 valve job is finally turning the corner back towards reassembly! I'm pushing to get it around the corner because even with all of this documentation I still want to have muscle memory of how it came apart when I put it back together. Today the cams came out along with the shims and everything got measured, so it's time for some maths!

The process of taking the cams out is pretty straightforward, but like everything else has twice as many fasteners and bits to it than you'd expect.


These oil pipes all have to come out. They're only held in by o-rings but were a struggle to release (you can imagine the heat cycles the o-rings in there have been through). What seemed to work best was (very carefully) getting a slot screwdriver down at the base and gently freeing it.

Caps off revealing the cams. With the tensioner removed (notice the slack in the chain) you can slip the cams out from under it.

The oil pipes (top right), cam chain tensioner (bottom right), intake (bottom) and exhaust cam shafts, and then the four caps and hardware (top left in the order they came out with fasteners included).

...and finally, I'm at what this whole production has been about: the shims under the cams. The caps are suctioned in with oil, but if you give them a turn by hand the magnet picks them up easily - the shims are underneath.



What the gaps are supposed to be: SPEC: exhaust valves 0.19 - 0.24mm Intake valves 0.12mm to 0.17mm.

red = tight, white = spec, pink = on the cusp of tight: most are tight so will need slightly shorter shims to make a bigger gap, but we're talking fractions of a milimeter here.

              Cyl 1                  Cyl 2                Cyl 3                Cyl 4

Gap   0.18   0.18         0.2    0.19       0.19    0.19       0.19   0.21
Shim  2.27  2.22          2.29  2.29       2.30    2.30        2.30    2.23

Gap  0.15   0.14         0.13    0.13     0.10   0.13         0.11   0.12
Shim 2.25  2.20          2.22  2.20       2.30    2.25        2.20    2.25

Here's the calculator (I just threw it in a spreadsheet):


They look like they do them in 0.05mm sizes. Let's see if I can do this in my head.

Cylinder 1 Exhaust 1 needs a 2.20 and a 2.15 (I'm going smaller because everything was tight and a smaller shim means a bigger gap). 2.20mm would mean the 0.18 gap becomes a 0.25 gap (too wide). A 2.25 shim only gets me 0.02 back and makes the 0.18 a 0.20 gap (in spec but up the tight end). C1 Exh 2 2.20 gets me 0.20 (spec but up the tight end - but maybe that's as close as I can get).

Exhaust
C1 E1: 2.25 (0.20 gap)      C1 E2: 2.20 (0.20 gap)
C2 E1: 2.25 (0.24 gap).     C2 E2: 2.25 (0.23 gap)
C3 E1: 2.25 (0.24 gap).     C3 E2: 2.25 (0.24 gap)
C4 E1: 2.25 (0.24 gap)      C4 E2: 2.20 (0.24 gap)
Intake
C1 I1: at spec                    C1 I2: at spec
C2 I1: at spec                    C2 I2: at spec
C3 I1: 2.25 (0.15 gap)       C3 I2: at spec
C4 I1: 2.15 (0.16 gap)       C2 I2: 2.20 (0.17 gap)

Shopping Canadian is Harder Than it Should Be

The kits aren't helpful - I'd be paying for a pile of shims I don't need and they only come with 3 in each size, so I'm stuck there too. They also only come in 0.05mm gaps. Following the above logic I should buy 2.25 x 7, 2.20 x 3 and 2.15 x 1. Let's go have a look at a Canadian option: https://fortnine.ca/en/pro-x-valve-shim-refill 

At $15.78 a pop I'm looking at a salty ~$170+ plus taxes, but (of course) they barely have any in stock so even if I wanted to pay through the nose it's still a no go. Looking through other makes on there, they all look to be out of stock. So much for buying Canadian.

Let's try another one: Parts Canada: 
0926-1391: 215mm x 1  0926-1392: 220mm x 3  0926-1393: 225mm x 9

...but Parts Canada doesn't sell online and seems to work out of people's garages which doesn't fill me with confidence.

This got the thumbs up on the GTA motorcycle group:
And they're on it - and even have half sizes! So now I can touch up my gaps better.


Here we go again:

Exhaust 
C1 E1: 2.225 (0.225 gap)   C1 E2: 2.175 (0.23 gap) 
C2 E1: 2.25   (0.24 gap)     C2 E2: 2.25 (0.23 gap) 
C3 E1: 2.25   (0.24 gap)     C3 E2: 2.25 (0.24 gap) 
C4 E1: 2.25   (0.24 gap)     C4 E2: 2.20 (0.24 gap) 
Intake 
C1 I1: at spec (.15)              C1 I2: at spec   (0.14 gap)
C2 I1: 2.20 (=0.16 gap)        C2 I2: 2.175  (=0.17 gap)
C3 I1: 2.25 (=0.15 gap)        C3 I2: 2.225  (=0.16 gap) 
C4 I1: 2.15 (=0.16 gap)        C2 I2: 2.225 (0.16 gap) 

14 out of 16 valves need shims.

2.225 x 3, 2.175 x 2, 2.25 x 6, 2.20 x 2, 2.15 x 1 (total of 14)


Under $30 US. Even with the conversion, shipping, customs (and now tarrifs), I'll still be miles ahead. The site is a joy to use, they sell individually AND at a higher resolution than anything I could find in Canada. I'm book marking https://www.rockymountainatvmc.com/ 

I'm going to calibrate the digital measurement tool I'm using by checking that the existing shims are 9.48mm diameter. It seemed close by eye but at fractions of a milimeter eyes aren't much good. I found the number changed depending on how I hold it, so if I can figure out which is the most accurate way, I'll use that when I do the confirmation measurements (measure twice cut once etc).


Where the cam chain tensioner is, in case the super close up in the shop manual proves unhelpful (as it did with me). 2 x 8mm bolts and it springs free. Reinstallation involves taking the tension off so you can align the chain.

New caliper is consistent which makes me trust it more, so I went with the new numbers.

New caliper. It consistently reads the same, which the other one didn't. It give me more confidence in the results. Here are the new numbers with Rocky Mountain's best shim fits:


I like to get my head around the maths so I backed up all the new measurements by visualizing the gaps they would produce - all nice and well within specs.

Just put the order in with Rocky Mountain. With FexEx and customs I'm under $75CAD all in. So I'm getting the right sizes and just what I need for well under half what it would have cost me to buy less accurate choices that aren't in stock anyway in Canada. How do we get this so wrong?

Sunday, 2 February 2025

Kawasaki Concours C14 1400GTR Valve Check Part 2.3 - confirmed gaps, next up is cam removal and shim measuring

I was busy at work with conferences, but got back for a Sunday afternoon in the garage. I'm trying out a new kerosene heater that seems to have solved my cold weather issues.

Once I had it into double digits Celsius I finished multi-checking the gaps:


Confirming the first round of measurements:

SPEC: exhaust valves 0.19 - 0.24mm     Intake valves 0.12mm to 0.17mm.

red = tight, white = spec, pink = on the cusp of tight: 

              Cyl 1                          Cyl 2                          Cyl 3                         Cyl 4

    EX  0.18   0.18               0.2    0.19                   0.19    0.19                0.19   0.21

    IN   0.15   0.14               0.13    0.13                  0.10   0.13                 0.11   0.12


Things are pretty tight. CoG has good resources on shim details. Tomorrow the cams come out, I measure what shims I've got, do some maths and order new shims for the tight valves. This means that perhaps next weekend I can turn a corner and actually start putting this thing (which is looking like a disassembled Concorde) back together again!

Unfortunately, I'm doing this just in time for the Americans to turn on us for no reason and make everything more expensive. Putin must be loving this, but then he did pay for it... but I digress.

Hopefully I'll have some time tomorrow to take out the cams and measure the shims in my warmer garage.


Tuesday, 21 January 2025

Kawasaki Concours C14 1400GTR Valve Check Part 2.2 - the cams are coming out

 I was (of course) hoping that the valves would all be in spec, but after a first round of measurements that is (of course) not the case, so this open heart surgery is going a step deeper: the camshafts are coming out. No point in getting in this far unless I sort everything while I'm in here.

Concours 14/1400GTR exhaust valves need to have between 0.19mm and 0.24mm of clearance. The intake valves need 0.12mm to 0.17mm. Looking at the notes below, I'm out of spec (tight) on most of them, making me wonder if anyone has ever been in here before. This one has 45k kms on it but it was semi-dormant when I found it. Most of the mileage was done in its first five years then it sat a lot. Alas, this is probably the case for most bikes.


Looking at this with red being too tight, white being in spec (anything on the edge I made pink), it's clear that C14s get tighter as they go: 

              Cyl 1                         Cyl 2                          Cyl 3                         Cyl 4

    EX  0.18   0.18               0.18    0.19                  0.19   0.19                0.19   0.22

    IN   0.14   0.14               0.14    0.14                  0.09   0.11                 0.11   0.12

Now that I've got a round of measurements, I'm going to do it all over again (that's what the pink notes are at the top of the handwritten bit above - the second round). Measure twice cut once and all that.

I hope to have confirmed everything this week and then I'll order shims to get everything in the sweet spot.  Or not...

It was -35 with windchill (-22C actual) last night. Will be again tonight, so I'm not going into the bloody garage!

Incredible that 5% of one millimeter is the resolution this machine works within, but what amazes me more is that even at a fraction of a millimetre I'm still sticking a bit of metal (like a caveman) in to measure these fine details. Why don't motorcycles make use of the mechanical precision used in car engines for the past quarter century and automatically adjust valves? Good question.

Like a caveman...


The middle ones are tricky to get to and the covers and various plumbing don't help even on the edge cylinders. That Moto Guzzi is looking more and more appealing, though it won't be the rocketship that the Kwak is.

Cam timing cover off to spin the motor and line up TDC for cylinders 1 and 4 which lets you check all the clearances.

Note the mark on the left side of the wheel where the cover gasket goes on - that's your timing mark.

The plumbing over the cams is something else.

The 0.127mm feeler gauge doing the business between the cam and that shim underneath. Replacing the shim with a smaller one puts the gap back in spec.


Using the bent and tapered bits I double checked each space. And will again before I commit to buying shims.